Identification and Genetic Differentiation of Powdery Mildew Resistance of some Egyptian Barley Genotypes

Authors

  • Elvis Dennis Zhejiang University
  • Elsayed E. Elshawy University of Papua New Guinea
  • Wessam A Abdelrady South Valley University
  • Betty Wakia Wuhan University of Technology https://orcid.org/0000-0003-4639-5573

DOI:

https://doi.org/10.59890/ijatss.v3i3.429

Keywords:

Barley, Genetic Diversity, Powdery Mildew, Resistance, SSRMAS, Principal Coordinate Analysis

Abstract

Powdery mildew is recognized as a paramount disease impacting barley crops, resulting in significant yield losses. This research aimed to identify Egyptian barley genotypes that not only possess a high yield potential but also exhibit resistance to powdery mildew. Twelve barley genotypes were evaluated over two consecutive growing seasons, 2021/2022 and 2022/2023, to assess their disease response. Among these, Line 2 showed the highest resistance to powdery mildew, closely followed by Giza 134, Giza 138, and Line 3, with Line 2 emerging as a promising candidate for breeding programs aimed at developing resistant cultivars. On the other hand, Giza 132 and Giza 126 were identified as the most susceptible, whereas Giza 123 and Giza 2000 displayed moderate susceptibility. The study utilized six SSR primers to analyze genetic diversity among the genotypes, with these primers demonstrating varying degrees of resolving power, the average being 2.66. Notably, the primer Bmac0213 was identified as the most effective for genetic diversity analysis, with the highest resolving power value of 4.28. Molecular similarity indices among the barley genotypes varied, ranging from 0.111 to 0.875, as determined by SSR data analysis. These findings contribute valuable insights for breeding strategies aimed at enhancing powdery mildew resistance in barley, highlighting the role of genetic diversity and molecular markers in identifying and developing resistant cultivars

References

Abdel-Azeem, A. M., El-Wakeel, S. E., El-Shawy, E. E., Mohdly, B. R., & Elakhdar, A. (2023). Evaluation of productivity and resistance to net blotch of some barley genotypes. Egyptian Journal of Agricultural Research, 101(4), 1035-1045.

Abdelrady, W. A., Ma, Z., Elshawy, E. E., Wang, L., Askri, S. M. H., Ibrahim, Z., Dennis, E., Kanwal, F., Zeng, F., & Shamsi, I. H. (2024). Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress, 100403.

Ahmad, A., Wang, J.-D., Pan, Y.-B., Sharif, R., & Gao, S.-J. (2018). Development and Use of Simple Sequence Repeats (SSRs) Markers for Sugarcane Breeding and Genetic Studies. Agronomy, 8(11), 260. https://www.mdpi.com/2073-4395/8/11/260

Beaubien, K. A., & Smith, K. P. (2006). New SSR markers for barley derived from the EST database. Barley Genet. Newsl, 36, 30-43.

Braun, U. (2012). Taxonomic manual of Erysiphales (powdery mildews). CBS Biodiversity series, 11.

Brown, J. K., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297(5581), 537-541.

Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J. T., & Wanamaker, S. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC genomics, 10, 1-13.

Czembor, J. H., Czembor, E., Suchecki, R., & Watson-Haigh, N. S. (2022). Genome-Wide Association Study for Powdery Mildew and Rusts Adult Plant Resistance in European Spring Barley from Polish Gene Bank. Agronomy, 12(1), 7. https://www.mdpi.com/2073-4395/12/1/7

Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., & Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430.

Deising, H. B., Werner, S., & Wernitz, M. (2000). The role of fungal appressoriain plant infection. Microbes and infection, 2(13), 1631-1641.

Dora, S., Mansour, M., ABOULILA, A. A., & Abdelwahab, E. (2017). Genetic diversity and relationships among some barley genotypes for net blotch disease resistance using RAPD, SCoT and SSR markers. Egyptian Journal of Genetics and Cytology, 46(1).

Dora, S. A., Aboulila, M. M. A. A., & Abdelwahab, E. (2021). Estimation of genetic components for net blotch disease resistance & some yield related traits in barley. Fresenius Environmental Bulletin, 30(06B), 7336-7345.

Fernandez, M., Figueiras, A., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845-851.

Glawe, D. A. (2008). The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol., 46, 27-51.

Godfrey, D., Zhang, Z., Saalbach, G., & Thordal‐Christensen, H. (2009). A proteomics study of barley powdery mildew haustoria. Proteomics, 9(12), 3222-3232.

Guo, J., Zhao, C., Gupta, S., Platz, G., Snyman, L., & Zhou, M. (2024). Genome-wide association mapping for seedling and adult resistance to powdery mildew in barley. Theoretical and Applied Genetics, 137(3), 1-11.

Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., & Ver Loren van Themaat, E. (2013). Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proceedings of the National Academy of Sciences, 110(24), E2219-E2228.

Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol, 19(1), 128. https://doi.org/10.1186/s43141-021-00231-1

Hearnden, P., Eckermann, P., McMichael, G., Hayden, M., Eglinton, J., & Chalmers, K. (2007). A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics, 115, 383-391.

Heffer, V., Johnson, K., Powelson, M., & Shishkoff, N. (2006). Identification of powdery mildew fungi anno 2006. The Plant Health Instructor.

Jankovics, T., Komáromi, J., Fábián, A., Jäger, K., Vida, G., & Kiss, L. (2015). New insights into the life cycle of the wheat powdery mildew: direct observation of ascosporic infection in Blumeria graminis f. sp. tritici. Phytopathology, 105(6), 797-804.

Kearsey, M., & Pooni, H. (1996). The genetical analysis of quantitative traits Chapman and Hall, Stanley Thornes (Publishers) Ltd. London. DOI: 10.1007/978-1-4899-4441, 2.

Kuhn, H., Kwaaitaal, M., Kusch, S., Acevedo-Garcia, J., Wu, H., & Panstruga, R. (2016). Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. The Arabidopsis Book/American Society of Plant Biologists, 14.

Leath, S., & Heun, M. (1990). Identification of powdery mildew resistance genes in cultivars of soft red winter wheat.

Leisova-Svobodova, L., Stemberková, L., Hanusová, M., & Kucera, L. (2011). Evaluation of barley genotypes for resistance to Pyrenophora teres using molecular markers. Journal of Life Sciences, 5(7).

Maroof, M. A., Biyashev, R. M., & Zhang, Q. (1994). Molecular marker analyses of powdery mildew resistance in barley. Theor Appl Genet, 88(6-7), 733-740. https://doi.org/10.1007/bf01253978

Mayer, K. F. X., Waugh, R., Langridge, P., Close, T. J., Wise, R. P., Graner, A., Matsumoto, T., Sato, K., Schulman, A., Muehlbauer, G. J., Stein, N., Ariyadasa, R., Schulte, D., Poursarebani, N., Zhou, R., Steuernagel, B., Mascher, M., Scholz, U., Shi, B., . . . editing of the, m. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature, 491(7426), 711-716. https://doi.org/10.1038/nature11543

Murray, M., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19), 4321-4326.

Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269-5273.

Noir, S., Colby, T., Harzen, A., Schmidt, J., & Panstruga, R. (2009). A proteomic analysis of powdery mildew (Blumeria graminis f. sp. hordei) conidiospores. Molecular plant pathology, 10(2), 223-236.

Noor-ul-Huda Ghori, T. G., Imadi, S. R., & Gul, A. (2020). Improving Crop Health and Productivity: Appraisal of Induced Mutations. Agronomic Crops: Volume 3: Stress Responses and Tolerance, 397.

Patnaik, D., & Khurana, P. (2003). Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology, 3, 1-11.

Piechota, U., Czembor, P. C., Słowacki, P., & Czembor, J. H. (2019). Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. Journal of applied genetics, 60, 243-254.

Prevost, A., & Wilkinson, M. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107-112.

Pryce-Jones, E., Carver, T., & GURR, S. J. (1999). The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiological and Molecular Plant Pathology, 55(3), 175-182.

Ramsay, L., Macaulay, M., Ivanissevich, S. d., MacLean, K., Cardle, L., Fuller, J., Edwards, K., Tuvesson, S., Morgante, M., & Massari, A. (2000). A simple sequence repeat-based linkage map of barley. Genetics, 156(4), 1997-2005.

Roldan-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., & De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular breeding, 6, 125-134.

Schmalenbach, I., Körber, N., & Pillen, K. (2008). Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theoretical and Applied Genetics, 117, 1093-1106.

Silvar, C., Casas, A., Kopahnke, D., Habekuß, A., Schweizer, G., Gracia, M., Lasa, J., Ciudad, F., Molina‐Cano, J., & Igartua, E. (2010). Screening the Spanish barley core collection for disease resistance. Plant Breeding, 129(1), 45-52.

Simon, A., Bindschedler, S., Job, D., Wick, L. Y., Filippidou, S., Kooli, W. M., Verrecchia, E. P., & Junier, P. (2015). Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium. FEMS microbiology ecology, 91(11), fiv116.

Snedecor, G., & Cochran, W. (1967). Statistical Methods. 6th EdIowa State Univ Press. Ame. Iowa. USA.

Struss, D., & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics, 97, 308-315.

Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffler, S., Ben-David, R., Doležel, J., Šimková, H., & Schulze-Lefert, P. (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature genetics, 45(9), 1092-1096.

Wolfe, M., Baresel, J., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Löschenberger, F., Miedaner, T., Østergård, H., & Lammerts van Bueren, E. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323-346.

Wolfe, M. S., & Schwarzbach, E. (1978). Patterns of race changes in powdery mildews. Annual Review of Phytopathology, 16(1), 159-180.

Wright, W. G. (1998). Evolution of nonassociative learning: behavioral analysis of a phylogenetic lesion. Neurobiology of learning and memory, 69(3), 326-337.

Downloads

Published

2025-03-24

Issue

Section

Articles